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Cauchy

Augustin Louis Cauchy
Born August 21, 1789, died May
23, 1857
Analysis, complex analysis,
permutation groups.
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A first order quasi-linear PDE

Theorem (Cauchy)
The analytic partial differential equation

∂u
∂t

(x , t) =
∑

j

fj(x , t, u)
∂u
∂x j (x , t) + g(x , t, u), u(x , 0) = ψ(x).

has a unique solution u(x , t).

Note that the variable t (often associated with time) has a
distinct role.
The theorem is also true for vector-valued functions u.
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Higher order PDE’s

Consider the wave equation ∂2u
∂x∂t = 0. We can rewrite this

equation as a first order system of equations. We let v = ∂u
∂x .

∂u
∂x

= v ,

∂v
∂t

= 0.

General strategy: replace the derivatives of the unknown functions
u by new unknown functions. Add equations to the system that
describe the relations. This can be used to generalize the previous
theorem to higher order and non-linear PDE’s. The result is the
Cauchy-Kowalevski theorem.
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Sofie Kowalevski

Sofie Kowalevski

Born in 1850, Moscow, Russia. Started
mathematics at a young age.

In 1868 married Vladimir Kovalevski to be able
to study mathematics and in 1869 moved to
Heidelberg

In 1871 she moved to Berlin to study with
Weierstrass. Published 3 papers but could not
get a position mainly because of her gender.
Wrote novels for several years and finally
obtained a position in Stockholm.

First woman to receive a doctorate in
mathematics and the first woman to obtain a
permanent position on a university faculty in
mathematics.

Pieter Eendebak Cartan-Kähler



The MathSciNet list

Kovalevskaya, Sof’ya Vasil’evna ; Kovalevskaya, S. V. ;
Kovalevskaya, Sofya ; Kovalevskaya, Sof’ya ; Kovalevskaja, Sophia
Vasilievna ; Kovalevskaja, S. V. ; Kovalevskaja, Sof’ja ;
Kovalevsky, Sofya ; Kovalevskaya, Sofia ; Kovalevskaja, Sonya ;
Kovalevskaja, Sofya ; Kovalevsky, Sophie ; Kovalevsky, Sonja ;
Kowalevski, Sophie ; Kovalevskaja, Sof’ya ; Kovalevskaja, Sof’ja ;
Kovalevskaya, Sonia ; Kovalevskaia, S. ; Kovalevskaya, Sonya ;
Kovalevskaia, Sofia ; Kovalevskaja, Sonja ; Kovalevsky, Sophia ;
Kovalevskaia, Sofia Vasilevna ; Kovalevskoja, S. ; Kovalevsky, S. ;
Kowalewskaja, Sofja ; Kowalewskaja, Sofia ; Kovalevskaya, Sophia

Pieter Eendebak Cartan-Kähler



Cauchy-Kowalevski theorem

Theorem (Cauchy-Kowalevski theorem)
The analytic partial differential equation

∂nu
∂tn = F (x , t, u,

∂u
∂x
, . . . ,

∂β

∂xβ

∂ lu
∂t l ).

has a unique analytic solution with boundary conditions

u(x , 0) = φ(x),
∂u
∂t

(x , 0) = φ1(x), . . . ,
∂n−1u
∂tn−1 (x , 0) = φn−1(x).

Here x ∈ Rn and u(x , t) is a function on Rn × R. We can allow u
to be vector valued, but for simplicity we will omit the indices.
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Proof (by Kowalevski and Cauchy)

First convert the problem to the case of a first order
quasi-linear equation.
By considering powers of x and t one quickly sees that there
is a unique formal power series solution.
We are left with proving convergence of the power series
solution. This is a straightforward (but not very interesting)
application of Cauchy’s majorant method. The estimates on
the boundary conditions and the function F translate to
estimates on the formal power series solution.

Pieter Eendebak Cartan-Kähler



Modern proof (Ovsjannikov)

A modern proof would consider the equation

∂u
∂t

= F (t, u), u(0) = v

where F is a differential operator and u(t) is valued in a
suitable space of functions. The space is provided with a
suitable norm (or family of norms) to make it into a Banach
space.
Next we apply Picard iteration as we would for an ordinary
differential equation, i.e. we consider

un+1(t) = v +

∫ t

0
F (un(τ), τ)dτ

and prove convergence.
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Generalizations

In general PDE’s are difficult. The Cauchy-Kowalevski
theorem is one of the very few general theorems. One of the
reasons for this is that the type of equation (for example
elliptic or hyperbolic) determines the type of solutions and the
type of boundary conditions one can set.
A major disadvantage of the Cauchy-Kowalevski theorem is
that it is only true in the analytic setting. There are many
counterexamples in the C∞ setting!

Skip heat equation example

We give one counterexample that was already given by
Kowalevski: the heat equation.
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The heat equation

∂u
∂t

=
∂2u
∂x2

We can apply the Cauchy-Kowalevski theorem if we set initial
values on the x variable, i.e. we can prescribe u(0, t) = φ(t).
But this is not very natural, we would like to prescribe the
temperature at a fixed moment in time and see how the
temperature evolves!
So suppose we want to have u(x , 0) = ψ(x) and solve the
heat equation. How do we do this?
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Power series for the heat equation

By writing a formal series as

u(x , t) =
∑

cklxkt l

and substituting this into the heat equation we can deduce
the relations

ckl =
(k + 2l)!

k!l!
ck+2l ,0

Note that the coefficients ck+2l ,0 are determined by the initial
value ψ(x)!
So any analytic solution will have to satisfy these relations.
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Initial conditions

We start with a innocently looking initial function
ψ(x) = 1/(1− x). Near 0 this is an analytic function in x .
The series expansion of φ(x) is 1 + x + x2 + . . ..
Any analytic solution u of the heat equation with
u(x , 0) = ψ(x) should therefore satisfy

ck0 = 1

ckl =
(k + 2l)!

k!l!
.

This determines a unique formal power series.
Suppose we analyze converge of this power series at a point
(x , t) = (0, ε). We then have

u(0, ε) =
∑

l

(2l)!
l!

εl .

This series diverges for all ε > 0!
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Exterior differential systems

Definition

We denote the k-forms on a manifold M by Ωk(M). The k-forms
form a vector space.

On differential forms we have two very important operations:
The wedge product.

(dx + dy) ∧ dy = dx ∧ dy + dy ∧ dy = dx ∧ dy

The exterior differentiation operation.

d(x2 + y2) = 2xdx + 2ydy
d(xdy) = dx ∧ dy
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Exterior differential systems

Definition
The k-forms together with the wedge product define an algebra,
which we denote by Ω∗(M).

An ideal in the algebra is a subset that is closed under addition and
taking wedge products with arbitrary k-forms. An ideal is
differentially closed if the ideal is closed under the d-operator.

Definition
An exterior differential system on a manifold M is a differentially
closed ideal in Ω∗(M).
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Integral manifolds

Definition
Let I be an exterior differential system on the manifold M spanned
by forms θ1, . . . , θa. An integral manifold U for the system is a
submanifold such that if φ : U → M is an embedding we have

φ∗(θa) = 0.
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Example: integral curves

Example

Let M = R2 and consider the vector field (−y , x). We define the
1-form θ = xdx + ydy . The integral manifolds for θ are
1-dimensional and are given by the solution curves of the vector
field.

Indeed: let φ : t 7→ (cos(t), sin(t)). Then we have

φ∗(θ) = φ∗(xdx + ydy)

= cos(t)d(cos(t)) + sin(t)d(sin(t))
= − cos(t) sin(t)dt + sin(t) cos(t)dt = 0.
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Independence conditions

An independence condition for an exterior differential system
is a n-form ω1 ∧ ω2 ∧ . . . ∧ ωn. We require that on integral
manifolds this k-form restricts to a non-zero volume form.
For example we can take ω1 = dx as an independence
condition in the previous example. The pullback is

φ∗(dx) = − sin(t)dt.

This is non-zero when t 6∈ Zπ.
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The wave equation

∆u =
∂2u
∂x2 −

∂2u
∂y2 = 0

Solutions are just functions u(x , y). Consider the manifold M with
coordinates x , y , u, p = ux , q = uy , r = uxx , s = uxy , t = uyy . Note
that any solution (in fact any function) defines a 2-dimensional
submanifold of M by

U : R2 → M : (x , y) 7→ (x , y , u(x , y),
∂u
∂x

(x , y), . . . ,
∂2u
∂y2 ).

But what submanifolds of M are solutions of the wave equation?
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On M we define three 1-forms (called the contact forms)

θ1 = du − pdx − qdy ,

θ2 = dp − rdx − sdy ,

θ3 = dq − sdx − tdy .

First property: the submanifolds U defined on the slide before
satisfy the condition that

U∗θj = 0.

The converse is also true: any submanifold U for which the
pullbacks of the forms θj is zero can locally be written as the graph
of a function.

Pieter Eendebak Cartan-Kähler



Second property: any solution of the wave equation is mapped to
the submanifold M̃ of M defined by r − t = 0. These two
properties characterize the solutions of the wave equation.

Theorem
The solutions of the wave equation are (locally) in one-to-one
correspondence with the integral manifolds of the exterior
differential system I = (θ1, θ2, θ3) on M̃ with independence
condition J = dx ∧ dy 6= 0.

Pieter Eendebak Cartan-Kähler



PDE’s

What is the relation between PDE’s and exterior differential
system?

PDE exterior differential system
framework local coordinates geometric
system system of PDE’s exterior differential ideal
solutions functions integral manifolds
differentiation partial derivatives d operator

Local coordinates are messy and often obscure the geometry of the
objects we are working with.
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Elie Cartan

Elie Joseph Cartan
Born 9 April 1869 in Dolomieu, France.
Died: 6 May 1951 in Paris, France
Continuous (Lie) groups, Lie algebras,
PDE’s (integrable systems, prolongation),
Riemannian geometry, symmetric spaces,
relativity and spinors.
Developed the theory of exterior
differential forms, the Cartan-Kähler
theorem and the method of equivalence.
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Erich Kähler

Erich Kähler
Born 16 January 1906, died 31 May 2000
The Cartan-Kähler theorem on singular
solutions of non-linear analytic differential
systems, Kähler metric on complex
manifolds, Kähler differentials.
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Basic problem

We are given a linear exterior differential system I generated by set
of differential 1-forms θ1, . . . , θa and an independence condition
J = ω1 ∧ ω2 ∧ . . . ∧ ωn 6= 0. We are looking for integral surfaces of
I .
The structure equations are

dθa ≡ πa
i ∧ ωi + T a

ĳω
i ∧ ωj mod I .

Or without indices

dθ ≡ π ∧ ω + Tω ∧ ω mod I .

Or in matrix form

d

θ
1

θ2

...

 ≡

π
1
1 π1

2 . . .
π2

1 π2
2 . . .

...
...

. . .

 ∧

ω
1

ω2

...

 + . . .
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Torsion

dθa = πa
i ∧ ωi + T a

ĳω
i ∧ ωj mod I .

The terms T a
ĳ are called torsion. We can sometimes change the

torsion by replacing the terms πa
i with new terms. The part that

cannot be changed is called intrinsic torsion.
At the points where there is intrinsic torsion, there are no integral
manifolds. The reason is that the terms ωi ∧ ωj will never become
zero under the pullback due to the independence condition.
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Cartan characters

Definition
Let (I , J) be an exterior differential system without torsion so we
can write the structure equations as

dθa ≡ πa
i ∧ ωi mod I .

The number of independent forms πa
k in column k is the Cartan

character sk . This number depends on the basis chosen, so we
agree to choose a generic basis. This is a basis θa for I such that
the sk are maximal.
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Cartan’s test

The Cartan characters determine some algebraic numbers. Using
these numbers we can test wether the system is in involution or
not. This is called Cartan’s test.
If a system is in involution there are no hidden integrability
conditions.
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The Cartan-Kähler theorem

Theorem (Cartan-Kähler)

Let (I , J) be a linear exterior differential system without torsion
and Cartan characters sk . Assume Cartan’s test is satisfied and the
system is in involution.
Then the system has integral manifolds and the general solution
depends on s1 functions of one variable, s2 functions of 2 variables,
. . . , sn functions of n variables.

The theorem does not give an explicit method for finding the
integral manifolds. From the proof it is clear that one can find
these integral manifolds by a repeated application of the
Cauchy-Kowalevski theorem.
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Examples

We will give two examples of the Cartan-Kähler theorem
The wave equation
Surfaces in R3
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The wave equation again

Remember that solutions of the wave equation corresponded to
integral manifolds of the exterior differential system I spanned by

θ1 = du − pdx − qdy ,

θ2 = dp − rdx − sdy ,

θ3 = dq − sdx − rdy .

with independence condition dx ∧ dy 6= 0. Let us calculate the
structure equations ...

dθ1 = −dp ∧ dx − dq ∧ dy

≡ (θ2 + rdx + sdy) ∧ dx + (θ3 + sdx + rdy)

≡ sdy ∧ dx + sdx ∧ dy = 0.

In a similar way

d
(
θ2

θ3

)
≡

(
dr ds
ds dr

)
∧

(
dx
dy

)
.
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d

θ1

θ2

θ3

 ≡

 0 0
dr ds
ds dr

 ∧
(

dx
dy

)

There is no torsion!
The Cartan characters are s1 = 2, s2 = 0. The system is in
involution.
By the Cartan-Kähler theorem the general solution depends
on two functions of 1 variable.
For the wave equation the “dimension count” of two functions
of one variable turns out to be correct.

u(x , y) = f (x + y) + g(x − y)

∂2u
∂x∂y

= 0

Pieter Eendebak Cartan-Kähler



Surfaces in R3

We will look at surfaces in R3 and impose some conditions on the
curvature of these surfaces. But first we have to formulate our
problem in terms of an exterior differential system.
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The orthonormal frame bundle

We let M = R3 with the usual metric. We can
define the orthonormal frame bundle FM. A point
in the frame bundle consists of a pair (x , u) where
x ∈ M and u is an isomorphism TxM → R3 that
represents an orthonormal frame in TxM. (A
frame is a basis for the tangent space).
The bundle FM → M is a smooth fibre bundle. R2
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The canonical coframe

On the frame bundle we can choose a canonical 1-form
ω by defining

ωx ,u(X ) = u(Tx ,Eπ(X ))

Note the 1-form is R3 valued. For convenience we will
choose a basis and write ω as ω1, ω2, ω3.

FM
π

��
M

Theorem (Theorem of Riemannian geometry)

There are unique 1-forms ωi
j on the frame bundle such that

dωi = ωi
j ∧ ωj

and ωi
j = −ωj

i .
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Surfaces

Any surface in M can be represented by a local embedding
U : R2 → R3. We can lift any such embedding to an embedding

φ : R2 → FM.

Such a lift is the original embedding together with a choice of
frame at each point of the surface. We can adapt such liftings to
the geometry of the surface.
For any surface there is an embedding φ such that φ∗(ω3) = 0. In
more geometric terms: the tangent space to the surface is spanned
at each point U(x) by the first two basis vectors in the choice of
framing. We call such lifts “first order adapted”.
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Integral surfaces

The idea is now to consider integral manifolds of a suitable exterior
differential system. We want that ω3 = 0 on these surfaces. But
then

0 = dω3 = −ω1
3 ∧ ω1 − ω2

3 ∧ ω2.

It follows (Cartan’s lemma) that

ω1
3 = a1

1ω
1 + a1

2ω2

ω2
3 = a1

2ω
1 + a2

2ω2

for certain functions ai
j .
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The exterior differential system

We add new coordinates ai
j to the system and define the 1-forms

θ0 = ω3,

θ1 = ω1
3 − a1

1ω
1 − a1

2ω
2,

θ2 = ω2
3 − a1

2ω
1 − a2

2ω
2.

We will look for integral surfaces of the exterior differential system
generated by θ0, θ1, θ2 with independence condition ω1 ∧ ω2 6= 0.
These integral surfaces correspond to adapted embeddings of
surfaces in R3.
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Apply the Cartan-Kähler theorem

The structure equations are

d

θ0

θ1

θ2

 ≡

 0 0
da1

1 da1
2

da1
2 da2

2

 ∧
(
ω1

ω2

)
.

No torsion.
Cartan characters: s1 = 2, s2 = 1.
The general surface in R3 depends on one function of 2
variables.
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Curvature conditions

The coefficients A = (ai
j) represent the shape operator of the

surface. In fact

det A = a1
1a2

2 − (a1
2)

2 = Gauss curvature

tr A = a1
1 + a2

2 = mean curvature

Let us construct surfaces with constant mean curvature (soap
bubbles). We restrict our exterior differential system to the
submanifold tr A = 0, i.e. a2

2 = −a1
1.
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The new structure equations are

d

θ0

θ1

θ2

 ≡

 0 0
da1

1 da1
2

da1
2 −da1

1

 ∧
(
ω1

ω2

)
.

No torsion.
Cartan characters: s1 = 2, s2 = 0.
The general surface in R3 with
constant mean curvature depends on
two functions of 1 variable.

Pieter Eendebak Cartan-Kähler



Why (not) the Cartan-Kähler theorem?

It is geometric, one does not need local coordinates.
Consider for example the equation for constant mean
curvature in local coordinates.

H =
(1 + h2

v huu − 2huhv huv + (1 + h2
u)hvv

2(1 + h2
u + h2

v )3/2 = constant

It is very powerfull: it can handle non-linear system of any
order
It is algorithmic: once your problem is formulated in
differential forms one can start applying the methods
It only works in the analytic setting
The calculations can become very complicated
The dimension count of the solutions might not give you
insight into the problem. For example: we still have no idea
how CMC surfaces look like.

Skip isometric embedding example
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The isometric embedding problem

Let M be a manifold with a smooth metric g = gĳdx idx j . Can we
isometrically embed this manifold into RN for some N?
Let x1, . . . , xn be coordinates on M and let the embedding be given
by x 7→ u(x) ∈ RN . The condition that u is preserves the metric is

gĳ =
∂u
∂x i ·

∂u
∂x j .

Since gĳ is symmetric in i , j these are n(n + 1)/2 equations for N
unknown functions u1, . . . , uN .
The general surface can not be embedded in RN if N < n(n + 1)/2.
For analytic metrics g the dimension N = n(n + 1)/2 is precisely
enough. We will prove this by using the Cartan-Kähler theorem.
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Geometry

Let (M, g) be a surface with analytic metric. Let FM be the
orthogonal frame bundle of M, i.e. a point in FM is a pair (x ,E )
where x ∈ M and E is an orthonormal frame in TxM. We
represent an orthonormal frame by an isomorphism TxM → R2.
On FM we define the soldering form, or canonical form, by

η(X ) = E ◦ Tπ(X ).

Note that η is a 1-form valued in R2. We choose a basis η1, η2.
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Theorem

There are unique anti-symmetric 1-forms ηi
j on FM such that

dηi = ηi
j ∧ ηj .

The structure equations for ηi
j are

dηi
j = −ηi

k ∧ ηk
j + (1/2)R i

jklη
k ∧ ηl

where R is the Riemann curvature tensor of the metric g .

On the frame bundle of R3 we can introduce in the same way
ω1, ω2, ω3 and 1-forms ωi

j .
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Embeddings

Every isometric embedding M → R3 we can extend to an
embedding M → FM × FR3. There are lots of different ways, but
we will adapt the embedding to the geometry of the system. For
every isometric embedding we can arrange that

ω3 = 0
η1 − ω1 = η2 − ω2 = 0

The converse is also true: integral manifolds in FM × FR3 that
satisfy the two conditions above together with the independence
condition η1 ∧ η2 = 0 correspond to isometric embeddings.
So we have succeeded in translation our isometric embedding
problem to a geometric problem in terms if 1-forms! Let’s try to
apply Cartan-Kähler!
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Structure equations

The differential ideal is spanned by η1 − ω1, η2 − ω2, ω3. The
structure equations are

dω3 = −ω1
3 ∧ η1 − ω2

3 ∧ η2 mod I

d(η1 − ω1) = −(η1
2 − ω1

2) ∧ η2 mod I

d(η2 − ω2) = (η1
2 − ω1

2) ∧ η1 mod I

By Cartan’s lemma it follows that we must have also η1
2 − ω1

2 = 0.
We add this condition to our ideal I and start again.
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Structure equations again

The differential ideal is spanned by η1 − ω1, η2 − ω2, ω3, η1
2 − ω1

2.
The structure equations are

dω3 ≡ −ω1
3 ∧ η1 − ω2

3 ∧ η2 mod Ĩ

d(η1 − ω1) ≡ 0 mod Ĩ

d(η2 − ω2) ≡ 0 mod Ĩ

d(η1
2 − ω1

2) = . . . Ĩ

The system is not in involution, so we prolong everything.
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Prolongation

We add variables h3
ĳ to the manifold. We add θi = ω3

i − h3
ĳη

j to Ĩ .
The structure equations for η1

2 − ω1
2 yield

d(η1
2 − ω1

2) = (h3
11h3

22 − h3
12h3

21 + R1
212)η

1 ∧ η2.

There is torsion so we must restrict to the codimension 1
submanifold defined by h3

11h3
22 − h3

12h3
21 + R1

212 = 0. Whenever
R 6= 0 this is a smooth submanifold of FM × FR3 × R3.
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Final structure equations

With suitable π1, π2 (see [Ivey and Landsberg(2003), p. 172–173])

dω3 ≡ 0 mod Ĩ

d(η1 − ω1) ≡ 0 mod Ĩ

d(η2 − ω2) ≡ 0 mod Ĩ

d(η1
2 − ω1

2) ≡ 0 mod Ĩ

d
(
θ1
θ2

)
≡

(
π1 π2
π2 (h22/h11)π1 − 2(h12/h11)π2

)
∧

(
η1
η2

)
The Cartan characters are s1 = 2, s2 = 0. The general isometric
embeddings exists and depends on two functions of 1 variable.
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The C∞ problem

The theorem is not true near points where the curvature is
degenerate. However

Theorem (Gromov)

Every surface with C∞ metric embeds isometrically in R5.
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Want to know more?

or BCG3 book
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R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt,
and P. A. Griffiths.
Exterior differential systems, volume 18 of Mathematical
Sciences Research Institute Publications.
Springer-Verlag, New York, 1991.
ISBN 0-387-97411-3.

Thomas A. Ivey and J. M. Landsberg.
Cartan for beginners: differential geometry via moving frames
and exterior differential systems, volume 61 of Graduate
Studies in Mathematics.
American Mathematical Society, Providence, RI, 2003.
ISBN 0-8218-3375-8.
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