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Distributions

Definition
Let M be a smooth manifold. A distribution on M is a smooth
constant rank vector subbundle of the tangent bundle TM.

Let V be a distribution. For a vectorfield X we write X ⊂ V if for
all points m ∈ M we have Xm ∈ Vm.

For example on R3 with coordinates x , y , z we can define the rank
two distribution V spanned by the vector field ∂x and ∂y . Then

Vx ,y ,z = {X = a∂x + b∂y | a, b ∈ R }.

Then ∂x + z∂y ⊂ V.
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The Lie brackets
For any pair of vector fields X ,Y on M the Lie bracket [X ,Y ] is
again a vector field on M. Definition:

[X ,Y ] = LX Y =
d
dt

∣∣∣∣
t=0

exp(tX )∗Y .

The value of [X ,Y ] at a point M depends not only on the values
of X ,Y at m, but also on the first order derivatives of X ,Y at the
point m.
Lemma
Let X ,Y be vector fields in the distribution V. Then [X ,Y ]m
mod Vm depends only on the values Xm,Ym.
Hence the Lie brackets induce a tensor

λ : V ×M V → TM/V.

We call this map the Lie brackets modulo the subbundle.

Skip proof
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Proof

Proof.
Let X ,Y ⊂ V and assume that at the point m we have Xm = 0.
Since the Lie brackets are bilinear and anti-symmetric it is
sufficient to prove that [X ,Y ]m ≡ 0 mod V.

Assume Xm = 0. Then we can write X = φjZj with Zj ⊂ V and
φj(m) = 0. Then modulo V

[X ,Y ] ≡ [φjZj ,Y ] ≡ φj [Zj ,Y ]− Y (φj)Zj ≡ φj [Zj ,Y ]

Hence at m we have [X ,Y ]m ≡ 0 mod V.
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Some definitions

We define the derived bundle V ′ of V as the distribution
spanned by V and the image of the Lie brackets modulo V.
Equivalently,

V ′ = { [X ,Y ]m | X ,Y ⊂ V }.

The kernel of the Lie brackets modulo V is called the Cauchy
characteristic space C(V). The Cauchy characteristic space
has the property that X ⊂ C(V) if and only if [X ,Y ] ⊂ V for
all Y ⊂ V.
An integral manifold U of a distribution V ⊂ TM is a
submanifold of M such that the tangent space TmU ⊂ Vm for
all points in m.
An invariant of a distribution V is a function φ such that
X (φ) = 0 for all X ⊂ V.
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Frobenius theorem

Theorem (Frobenius theorem)
Suppose V is a rank k distribution such that [X ,Y ] ⊂ V for all
X ,Y ⊂ V. Then locally there is a foliation of M by integral
manifolds of dimension k.

The maximal integral manifolds are called the leaves of V.
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Solutions of partial differential equations and integral
manifolds

We will consider second order scalar partial differential equations in
two independent variables. The independent variables are always
x , y , the dependent variable z and the first and second order
derivatives will be written as

p =
∂z
∂x , q =

∂z
∂y ,

r =
∂2z
∂x2 , s =

∂2z
∂x∂y , t =

∂2z
∂y2 .

The graph of any function z(x , y) is a 2-dimensional submanifold
of the zeroth order jet bundle. The graph of the second order jet
of the function is a submanifold of Q = J2(R2,R).
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Example: jet bundle

We consider the function z(x , y) = x2 + y .
Let X = J0(R2) be the zero-th order jet bundle. The graph of this
function is given by

{ (x , y , z(x , y)) = (x , y , x2 + y) ∈ J0(R2) | x , y ∈ R } ⊂ X .

The second order jet of z(x , y) is given by the map

R2 7→ J2(R2) : (x , y) 7→ (x , y , z , zx , zy , . . . , zyy ).

The graph of the second order jet j2z is the submanifold of J2(R2)
given by

U = {m = (x , y , x2 + y , 2x , 1, 2, 0, 0) ∈ J2(R2) | x , y ∈ R }.
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The tangent space to such a graph is spanned by two vectors

(x , y) 7→ (x , y , z , p, q, r , s, t)

(1, 0, ∂z
∂x ,

∂2z
∂x2 ,

∂2z
∂x∂y ,

∂3z
∂x3 ,

∂3z
∂x2∂y ,

∂3z
∂x∂y2 )

= (1, 0, p, r , s, ∂
3z
∂x3 ,

∂3z
∂x2∂y ,

∂3z
∂x∂y2 ),

(0, 1, q, s, t, ∂3z
∂x2∂y ,

∂3z
∂x∂y2 ,

∂3z
∂y3 ).

These vectors are contained in the contact distribution W spanned
by

X = ∂x + p∂z + r∂p + s∂q,

Y = ∂y + q∂z + s∂p + t∂q,

R = ∂r , S = ∂s , T = ∂t .

The distribution W defines the contact structure on the jet bundle.
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In other words: the graph of the function z(x , y) defines an
integral manifold of W. The converse is also true.

Theorem
Let (Q,W) be the second order jet bundle of X with contact
distribution defined previously. Then an integral manifold of W
that is transversal to the projection Q → X is locally equal to the
graph of the 2-jet a function z(x , y).
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Partial differential equations

Any second order equation F (x , y , z , p, q, r , s, t) = 0 defines a
hypersurface M ⊂ Q. On M we define a contact structure by
V = W ∩ TM.

A solution of the partial differential equation F = 0 is a function
z(x , y) for which the graph of the 2-jet is a submanifold of M. At
the same time the graph is an integral manifold of W and hence of
V.
Theorem
Locally there is a one-to-one correspondence between integral
manifolds of (M,V) transversal to the projection M → X and
solutions of the partial differential equation F = 0.
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Vessiot theorem

Theorem
Let M be a 7-dimensional manifold with a rank 4 distribution V.
Then (M,V) is locally equivalent to the equation manifold of a
second order scalar equation in two independent variables if and
only if

For every m ∈ M the Cauchy characteristic space C(V)m of V
at m is equal to zero.
For every m ∈ M the derived bundle V ′m has rank 6.
For every m ∈ M, C(V ′)m is contained in Vm and has rank 2.
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Ernest Vessiot

Ernest Vessiot (1865–1952)
Picard-Vessiot theory (differential Galois
theory), ballistics
Formulation of partial differential
equations in terms of distributions (dual
to the work of Cartan), Darboux
integrable hyperbolic Goursat equations
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Contact distribution for the wave equation

Consider the wave equation zxy = s = 0. We can use
x , y , z , p, q, r , t as coordinates for the equation manifold. The
contact distribution is spanned by the vectors

F1 = ∂x + p∂z + r∂p, F2 = ∂r ,

G1 = ∂y + q∂z + r∂q, G2 = ∂t .

Note that [F1,F2] = −∂p, so ∂p is in the derived bundle. One can
easily check that V ′ = span(F1,F2,G1,G2, ∂p, ∂q).
In a similar way C(V) = 0, C(V ′) = span(F2,G2).
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Integral elements

Let U be an integral manifold of V, i.e., TU ⊂ V . Then for
any pair of vector fields X ,Y on U we have [X ,Y ] ⊂ TU.
Therefore the Lie brackets modulo V must vanish on TU.
The subspaces of Vm on which the Lie brackets modulo V
vanish are called the integral elements of V. These integral
elements are the solutions of the linearization of the equation.
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The Lie brackets modulo V
Since the Lie brackets are contained in V ′ (by definition), the Lie
brackets define an anti-symmetric bilinear map

λ : V ×M V → V ′/V.

For any form ξ ∈ (V ′/V)∗ we can consider the 2-form
(ξ ◦ λ) : Λ2V → R and the 4-form

(ξ ◦ λ) ∧ (ξ ◦ λ) : Λ4V → R.

We have a conformal quadratic form on V ′/V.
Discriminant of quadratic form: type of equation
We choose two isotropic elements ξ± (‘roots’). Then

ξ± ◦ λ

are anti-symmetric bilinear forms on V. The kernels V± are
called the Monge systems.
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Integral elements

Hyperbolic For hyperbolic equations we have V = V+ ⊕ V−. The
splitting of V defines a direct product structure. The
2-dimensional integral elements are precisely those
linear subspaces that have non-zero intersection with
both V±. The space of integral elements at m is a
torus

Elliptic For elliptic equations the isotropic elements are
complex and hence we find complex Monge systems
V ⊗ C = V+ ⊕ V−. We define J : V ⊗ C by
J |V± = ±i . Then J restricted to V defines a complex
structure. The 2-dimensional integral elements are
complex lines for J .

Parabolic Between elliptic and hyperbolic
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Integral elements for a parabolic equation
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Geometry of partial differential equations

PDE Contact structure
framework local coordinates geometric
system system of PDE’s distribution
solutions functions integral manifolds
differentiation partial derivatives Lie brackets, d operator

Pieter Eendebak Contact Structures



Contact distribution for the wave equation

Consider the wave equation s = 0. We can use x , y , z , p, q, r , t as
coordinates for the equation manifold. The Monge systems are
given by

V+ = span(∂x + p∂z + r∂p, ∂r ),

V− = span(∂y + q∂z + t∂q, ∂t).

The invariants of V− are x , p, r and the invariants of V+ are y , q, t.
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Gaston Darboux

Gaston Darboux (1842–1917)
Darboux integral (integration theory),
Darboux theorem (symplectic geometry)
The method of Darboux to integrate
second order partial differential equations
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The method of Darboux

Find invariants of the Monge systems
Make a projection
Lift pseudoholomorphic curves to solutions of the equation

Step 1: If each Monge system has at least two invariants the
equation is Darboux integrable.
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Intermezzo: almost complex and almost product structures

Almost complex structure: J : TM → TM, J2 = −1

Almost product structure: K : TM → TM, K 2 = 1
The eigenspaces of K for the eigenvalues ±1 give the tangent
space a direct sum structure TmM = V+ ⊕ V−.
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The method of Darboux 2: projection

Suppose I1, I2 are invariants of V− and I3, I4 invariants of V+.
Define the Darboux projection π : M → R2 × R2 : m 7→ I j(m).
Then Tπ∗(V+) ⊂ T (R2 × { 0 }) and Tπ∗(V−) ⊂ T ({ 0 } × R2).
The projection is transversal to V and hence Tmπ : Vm → Tπ(m)B
is injective.

The projection intertwines the direct product structure on V with
the direct product structure on R2 × R2, i.e.,

Tπ ◦ K = KB ◦ Tπ
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The method of Darboux: elliptic equations

For an elliptic equation we can take two complex invariants of one
of the complex Monge systems. Then we can define a projection
M → C2 such that

Tπ ◦ J = JB ◦ Tπ

Here JB is the complex structure on C2.
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Intermezzo: pseudoholomorphic curves

For a complex structure J a pseudoholomorphic curve is a real
2-dimensional manifold for which the tangent space is J-invariant.
Construction for C2: pseudoholomorphic curves are given by the
graphs of complex-differentiable functions C → C.

For a hyperbolic structure K : TM → TM a (hyperbolic)
pseudoholomorphic curve is a real 2-dimensional submanifold S
with K -invariant tangent space. We require the additional
condition that the intersection of TS with the eigensystems of K is
non-trivial.
Construction for R2 × R2: choose two curves φ1, ψ2 in R2. Then
the direct product S̃ = φ1 × φ2 ⊂ R2 × R2 defines a
pseudoholomorphic curve.
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The method of Darboux 3: lifting solutions

Let S = π−1(S̃) and on S we define W = V ∩ TS. Since V is
transversal to π we have rankW = dim S̃ = 2.

For any pair of vector fields X ,Y ⊂ W we have
Tπ([X ,Y ]) = [Tπ(X ),Tπ(Y )] ⊂ TS̃. Hence [X ,Y ] ⊂ TS.
Assume X ⊂ W+ = V+ ∩ TS, Y ⊂ W− = V− ∩ TS. Then
[X ,Y ] ⊂ [V+,V−] ⊂ V.
Since W has rank 2 this shows that [X ,Y ] ⊂ V for all
X ,Y ⊂ V.

Together: [X ,Y ] ⊂ W = TS ∩ V.
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The method of Darboux 3: lifting solutions

Hence the distribution W is integrable and by the Frobenius
theorem there exists a local foliation of M by 2-dimensional
integral manifolds of W and hence of V.

Theorem
There is a one-to-one correspondence between pseudoholomorphic
curves for the projected structure JB and 3-dimensional families of
integral manifolds of V.
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Geometric picture of lifting

TmS̃

π

Tmπ

Wm

M

B
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Example: s = p/(y − x)

Let us consider the second order scalar partial differential equation
s = p/(y − x). The Monge systems are given by

V+ = span(∂x + p∂z + r∂p +
p

y − x ∂q, ∂r ),

V− = span(∂y + q∂z +
p

y − x ∂p + t∂q +

(
r(y − x) + p

(y − x)2

)
∂r , ∂t).

Invariants The distribution V+ has invariants y and τ = t. The
distribution V− has invariants x , p/(y − x) and
ρ = r/(y − x) + p/(y − x)2;
Projection We make the projection π : M → R2 × R2. On
R2 × R2 we use (x , ρ) and (y , τ) as coordinates.
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Example: s = p/(y − x)

Lifting Choose two arbitrary functions φ, ψ. In R2 × R2 we define
a pseudoholomorphic curve for the direct product structure by

ρ = φ(x), τ = ψ(y).

On the inverse image of the curve under π we have a rank two
integrable distribution.

Integration yields the general solution of the equation:

z(x , y) = A(y) + B(x) + B′(x)(y − x).

p = B′(x) + B′′(x)(y − x)− B′(x) = B′′(x)(y − x)

s = B′′(x)
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Sophus Lie

Sophus Lie (1842–1988)
Geometric structures, partial
differential equations, Lie groups
Symmetries of partial differential
equations
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Example: CMC surfaces

Consider for example the equation for constant mean curvature in
local coordinates.

H =
(1 + h2

v huu − 2huhv huv + (1 + h2
u)hvv

2(1 + h2
u + h2

v )3/2 = constant

The equations are elliptic and hence on V we have an almost
complex structure. We can take the quotient of the equation
manifold by the translation symmetries.
Let B = M/ ∼. Then π : M → B defines a a bĳective map
TmπVm → Tπ(m)B except at singular points. The complex
structure on V is projected to an almost complex structure JB on
B in the sense that

Tπ ◦ J = JB ◦ Tπ. (1)
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CMC equation: solutions

We can lift pseudoholomorphic curves to solutions of the CMC
with the same construction as the method of Darboux.

Lifted solutions: Weierstrass representation.

x
y
z

 = <
∫  f (1− g2)

if (1 + g2)
2fg

 dw
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Generalized Darboux integrability

We have introduced two methods of integrating partial differential
equations: the method of Darboux and symmetry reductions (CMC
surface). For both methods there is a projection M → B
transversal to V such that the Monge systems project to B.

Symmetry reduction No symmetry
Darboux integrable Minimal surface equation s = p/(y − x)

Not Darboux integrable CMC surfaces ?
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Pseudosymmetries for vector fields

VectorfieldVectorfield Symmetry projectionVectorfield Symmetry projectionVectorfield Symmetry projection

Pseudosymmetry projection

Vectorfield Symmetry projection

Pseudosymmetry projection No well−defined projection
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Pseudosymmetries of distributions

Definition
A pseudosymmetry V of a distribution V is an integrable
distribution U such that [U ,V] ⊂ span(V,U).

Locally let B to be the quotient manifold of M by the leaves of U .
Then the distribution V projects to a distribution on B. We have
Tmπ(Vm) = Wπ(m) ⊂ Tπ(m)B.
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Theorem
Let (M,V) be an elliptic (hyperbolic) Vessiot system. Let U be a
rank 3 distribution on M that is

The distribution U is integrable
The distribution U is a pseudosymmetry of both Monge
systems

Then locally the leaves of U define a 4-dimensional manifold B and
the projection π : M → B intertwines the complex structure (direct
product structure) on V with an almost complex structure (almost
product structure) JB on B.
The integral manifolds of V are in one-to-one correspondence (up
to an integration constant) with the pseudoholomorphic curves for
JB.
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Some results

Every Darboux integrable equation has a pseudosymmetry.
Every symmetry reduction by a 3-dimensional symmetry group
is a pseudosymmetry.
Very few projections are both a Darboux projection and a
symmetry projection.
There exists examples of pseudosymmetries that are neither a
symmetry reduction nor a Darboux projection.
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Messages to take home

Contact structures can be used to give a geometric
description of partial differential equations
Whenever symmetries are used, maybe pseudosymmetries can
be used as well (for making projections, or maybe something
completely different)

More: Contact Structures of Partial Differential Equations,
http://www.math.uu.nl/people/eendebak/

Pieter Eendebak Contact Structures


	Distributions
	Solutions and integral manifolds
	Vessiot theorem

	Structure theory
	Integral elements

	Darboux integrable equations
	The method of Darboux
	Example

	Symmetry reductions
	Projections

